Генетический код — это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.
Реализация генетической информации в живых клетках (то есть синтез белка, закодированного в ДНК) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции (синтез полипептидной цепи на матрице иРНК).
В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). Эти «буквы» составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменен урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности «букв».
В нуклеотидной последовательности ДНК имеются кодовые «слова» для каждой аминокислоты будущей молекулы белка — генетический код. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.
Три стоящих подряд нуклеотида кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.
В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определенных свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.
Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК — копия одной из нитей ДНК, то чаще всего генетический код записывают на "языке РНК".
Аминокислота | Кодирующие триплеты РНК |
---|---|
Аланин | ГЦУ ГЦЦ ГЦА ГЦГ |
Аргинин | ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ |
Аспарагин | ААУ ААЦ |
Аспарагиновая кислота | ГАУ ГАЦ |
Валин | ГУУ ГУЦ ГУА ГУГ |
Гистидин | ЦАУ ЦАЦ |
Глицин | ГГУ ГГЦ ГГА ГГГ |
Глутамин | ЦАА ЦАГ |
Глутаминовая кислота | ГАА ГАГ |
Изолейцин | АУУ АУЦ АУА |
Лейцин | ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ |
Лизин | ААА ААГ |
Метионин | АУГ |
Пролин | ЦЦУ ЦЦЦ ЦЦА ЦЦГ |
Серин | УЦУ УЦЦ УЦА УЦГ АГУ АГЦ |
Тирозин | УАУ УАЦ |
Треонин | АЦУ АЦЦ АЦА АЦГ |
Триптофан | УГГ |
Фенилаланин | УУУ УУЦ |
Цистеин | УГУ УГЦ |
СТОП | УГА УАГ УАА |
Свойства генетического кода
- Триплетность
Три стоящих подряд нуклеотида (азотистых оснований) кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.
Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.
- Однозначность (дискретность)
Один триплет не может кодировать две разные аминокислоты, шифрует только одну аминокислоту. Определенный кодон соответствует только одной аминокислоте.
- Избыточность (вырожденность)
Каждая аминокислота может определяться более, чем одним триплетом. Исключение — метионин итриптофан. Другими словами — одной и той же аминокислоте может соответствовать несколько кодонов.
- Неперекрываемость
Одно и то же основание не может одновременно входить в два соседних кодона.
- Полярность
Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, поэтому мы можем говорить о полярности генетического кода.
- Универсальность
У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, то есть генетический код одинаков для всех живых существ. Другими словами, универсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Универсальность кода ДНК подтверждает единство происхождения всего живого на нашей планете. На использовании свойства универсальности генетического кода основаны методы генной инженерии.
Из истории открытия генетического кода
Впервые идея о существовании генетического кода сформулирована А. Дауном и Г. Гамовым в 1952 — 1954 годах. Учёные показали, что последовательность нуклеотидов, однозначно определяющая синтез той или иной аминокислоты, должна содержать не менее трёх звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном или триплетом.
Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 года. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только 4 аминокислоты могут кодироваться. Однако код не может быть и дуплетным, то есть комбинация двух нуклеотидов из четырехбуквенного «алфавита» не может охватить всех аминокислот, так как подобных комбинаций теоретически возможно только 16 (42 = 16).
Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, когда число возможных комбинаций составит 64 (43 = 64).